If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2-9w+12=0
a = 1; b = -9; c = +12;
Δ = b2-4ac
Δ = -92-4·1·12
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{33}}{2*1}=\frac{9-\sqrt{33}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{33}}{2*1}=\frac{9+\sqrt{33}}{2} $
| 6y-57=-15 | | 1.33y=40 | | 3,3+2p=4,9 | | 9=w=2 | | 8(m=1)=32 | | 2y-1÷2=17 | | 3x2+7x=40 | | 3(2(x+1)-(x+2))=2x+1 | | 8(j-12)=24 | | v=13-5 | | |3-2x|=9 | | 7p+6=62 | | X²+16x=-8 | | 2x-3=64+x-58 | | 9=z+26/6 | | 6(m-83)=48 | | -11n-4=-5n+18 | | 24=4p-12 | | 7(r-82)=49 | | 5j+13=68 | | n+30=96 | | 7=2r-5 | | 3(p+15)=84 | | 5/7+a=7/5 | | 4(s-5)=12 | | 7e-6=0 | | (x+2)^2=2 | | 5x+1=6x=8 | | 16=6x+#-4x | | 147-x=42 | | 2x+3x+8=180 | | 5y=y=4 |